If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2-36x-3=0
a = 14; b = -36; c = -3;
Δ = b2-4ac
Δ = -362-4·14·(-3)
Δ = 1464
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1464}=\sqrt{4*366}=\sqrt{4}*\sqrt{366}=2\sqrt{366}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-2\sqrt{366}}{2*14}=\frac{36-2\sqrt{366}}{28} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+2\sqrt{366}}{2*14}=\frac{36+2\sqrt{366}}{28} $
| 28-j=18 | | 5=1x+.2x | | b/4-5=1 | | 31.5-2y=8 | | 16x/4=4/1 | | 5=1e+.2e | | 31-5w=21 | | 3(10.5)-2y=8 | | 2w-15w=39 | | 12x2-17x-5=0 | | -4=3x+2-6x | | 15/25=d/10 | | -(5x-1)=-4 | | -8x-6=-6(x+2) | | x+3/10=x/7 | | 3(b-12)-6=18 | | 3(k-7)-1=5/2 | | 2(x+3=3x+3 | | 4.5x+1.5=24 | | 9(5)=2x(15) | | x+12-4x=3+4x-4x | | 3m-20=m+3 | | x+12-4x=3+4x+4x | | 1/3(5x+6)-1/2(×+7)=2 | | -7x+22=1 | | x+12-4x=3+4x-5 | | 2=w/5-14 | | 4.5x+1.5(-x-4)=24 | | 72=4v-8 | | -(3y+2)-(-2y-5)=2 | | 30x+245-70x=225 | | (15y-40)/12=y |